Mechanisms Regulating SHORT-ROOT Intercellular Movement

نویسندگان

  • Kimberly L. Gallagher
  • Alice J. Paquette
  • Keiji Nakajima
  • Philip N. Benfey
چکیده

Signaling centers within developing organs regulate morphogenesis in both plants and animals. The putative transcription factor SHORT-ROOT (SHR) is an organizing signal regulating the division of specific stem cells in the Arabidopsis root. Comparison of gene transcription with protein localization indicates that SHR moves in a highly specific manner from the cells of the stele in which it is synthesized outward. Here, we provide evidence that SHR intercellular trafficking is both regulated and targeted. First, we show that subcellular localization of SHR in the stele is intrinsic to the SHR protein. Next, we show that SHR must be present in the cytoplasm to move, providing evidence that SHR movement is regulated. Finally, we describe an informative new shr allele, in which the protein is present in the cytoplasm yet does not move. Thus, in contrast to proteins that move by a process resembling diffusion, a cytoplasmic pool of SHR is not sufficient for movement.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A plausible mechanism, based upon Short-Root movement, for regulating the number of cortex cell layers in roots.

Formation of specialized cells and tissues at defined times and in specific positions is essential for the development of multicellular organisms. Often this developmental precision is achieved through intercellular signaling networks, which establish patterns of differential gene expression and ultimately the specification of distinct cell fates. Here we address the question of how the Short-r...

متن کامل

Intercellular communication during plant development.

Multicellular organisms depend on cell-to-cell communication to coordinate both development and environmental responses across diverse cell types. Intercellular signaling is particularly critical in plants because development is primarily postembryonic and continuous over a plant's life span. Additionally, development is impacted by restrictions imposed by a sessile lifestyle and limitations on...

متن کامل

Assessing the Utility of Photoswitchable Fluorescent Proteins for Tracking Intercellular Protein Movement in the Arabidopsis Root

One way in which cells communicate is through the direct transfer of proteins. In plants, many of these proteins are transcription factors, which are made by one cell type and traffic into another. In order to understand how this movement occurs and its role in development, we would like to track this movement in live, intact plants in real-time. Here we examine the utility of the photoconverti...

متن کامل

An Essential Protein that Interacts with Endosomes and Promotes Movement of the SHORT-ROOT Transcription Factor

Plant cells can communicate through the direct transport of transcription factors [1-7]. One of the best-studied examples of this phenomenon is SHORT-ROOT (SHR), which moves from the stele cells into the endodermis and root tip of Arabidopsis, where it specifies endodermal cell identity and stem cell function, respectively [8-10]. In the endodermis, SHR upregulates the transcription factors SCA...

متن کامل

A broad competence to respond to SHORT ROOT revealed by tissue-specific ectopic expression.

In plants, cell fate specification depends primarily on position rather than lineage. Recent results indicate that positional information can be transmitted through intercellular trafficking of transcription factors. The SHORT ROOT (SHR) gene, a member of the GRAS family of putative transcription factors, is involved in root radial patterning in Arabidopsis. Correct radial patterning depends on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2004